

JN30

technical reference manual

Version 1.4 Preliminary

February 2020

Auvidea GmbH Kellerberg 3 D-86920 Denklingen Tel: +49 8243 7714 622 info@auvidea.com www.auvidea.com

Copyright Notice

Trademarks

NVIDIA, the NVIDIA logo, CUDA, Jetson, Maxwell, Tegra, Nano and VisionWorks are registered trademarks and/ or trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

© Auvidea GmbH 2020

All Rights Reserved

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the author, unless otherwise indicated for stand-alone materials.

You may share this document by any of the following means: this PDF file may be distributed freely, as long as no changes or modifications to the document are made.

For any other mode of sharing, please contact the author at the email below. info@auvidea.com Commercial use and distribution of the contents of this document is not allowed without express and prior written consent of Auvidea GmbH.

Overview

JN30 carrier board for the NVIDIA Nano

The JN30 has been designed slightly larger than the dev kit version but with the maximum performance and full use of all the interfaces needed to serve your needs.

Technical details

- carrier board for one NVIDIA® Nano[™] compute module (dev kit or production version)
- PoE (PSE/PD) optional
- one USB 3.0 type A vertical
- RJ45 connector for 1000bT Ethernet (GbE)
- UART 0 (3.3V TTL) (6 pin) console access
- fan connector (4 pin)
- HDMI and display port out
- M.2 key M 2280 NVME PCIe x4
- size: 81,7mm x 104,6mm (size of the PCB with all components)
- height: 21 mm (with NVIDIA® Nano[™] compute module)
- mounting: 4 holes with 3.2mm each
- model: 38346

Power

• power: 12 - 48V (depending on the version - more on page 05)

The diagram below shows how the ordering code is assembled.

Models:

The JN30A is designed for the dev kit version of the Nano compute module.

The JN30B is designed for the production version of the Nano compute module. The version is shipped as a bare module. Auvidea can supply the mounting kit with spring and screws. Also a heat sink or a heat spreader.

The 2 versions of the Nano compute modules are not pin compatible and therefore not interchangeable.

Features

Feature	JN30-LC	JN30-PD	JN30-PSE	JN30-PSE48
HDMI out	\checkmark	\checkmark	\checkmark	\checkmark
Display port out	-	\checkmark	\checkmark	\checkmark
48V power in capable	-	\checkmark	\checkmark	\checkmark
micro USB 2.0 OTG	\checkmark	\checkmark	\checkmark	\checkmark
USB 3.0 type A	\checkmark	\checkmark	\checkmark	\checkmark
10/100/1000 Ethernet (RJ45)	\checkmark	\checkmark	\checkmark	\checkmark
IMU MPU-9250 (optional 9 axis sensor)	-	\checkmark	\checkmark	\checkmark
PoE version	-	PoE PD (class 4; up to 25.5W)	PoE PSE (up to 15W)	PoE PSE (up to 30W out)
Components on both sides	-	\checkmark	\checkmark	\checkmark
M.2 slot (NVME PCIe x4)	-	\checkmark	\checkmark	\checkmark
UARTO (3.3V TTL debug access)	1	1	1	1
CSI-2 (22 pin - 4 lanes)	2	2	2	2
CSI-2 (22 pin - 2 lanes) (starting rev 5 only)	-	\checkmark	\checkmark	\checkmark
fan connector	\checkmark	\checkmark	\checkmark	\checkmark
power in (5.5/2.5mm)	612V	648V	648V	48V
UPS backup support (supercap add-on module)	-	\checkmark	\checkmark	\checkmark

The JN30B starting with rev 5 adds to extra 2 lanes CSI-2 connectors on the bottom side.

The supercap add-on module is still in design. It allows to power the JN30 and Nano for a few minutes to supporters a graceful power down in case of a sudden power loss.

Auto flashing

Just connect a USB OTG cable from your host PC and power up the JN30/Nano. No need to press any switches. The MCU will detect this condition and control the switches appropriately.

Add-on modules

- 38363: 4 port 100bT Ethernet with PoE PSE to connect to 4 network IP cameras
- 38372: M.2 LTE and M.2 Wifi adapter
- 38385: USB 2.0 to 4x USB 2.0 hub
- 38391: dev kit camera module and 2x GbE (i210 JST-GH)
- 38392: dev kit camera module, 1x GbE (i210 JST-GH) and mini UPS controller (supercaps)

JN30

This new JN30 carrier board turns the Jetson Nano compute module into a super mini computer. The Nano offers very high computational (quad core ARM Cortex-A57 with up to 1.43 GHz) and graphical (NVIDIA Maxwell with 128 CUDA cores) processing performance in a tiny form factor.

The JN30 comes with three options for PoE:

- PD
- PSE
- PSE48

PD:

The JN30 is a powered device (PD). The JN30 receives its power via the Ethernet socket (RJ45) from an Ethernet switch. The JN30-PD is designed to be a Class 4 device (PoE+). This provides the power budget for a Nano at full power and USB3 peripherals connected (up to 25.5W; PoE+). Optionally it may be set for class 3. Please contact us for details. Please note that there is no galvanic isolation for the PD power input. Potentially this could cause issues if the JN30 is mounted in a metal case with connection to earth ground.

PSE:

A JN30 with PoE PSE (power sourcing equipment) (PSE) can power a connected PoE device such h as a network IP camera. PSE is working with up to 12.95W (class 3). Please pay special attention to the temperature of the onboard 12V-48V power supply. At high loads the 12V to 48V power supply may heat up. Extra cooling may be required.

PSE48:

This version is very similar to the JN30 PSE version. The difference is that it does not have the on board 12V to 48V power supply. Instead it requires a 48V DC power adapter.

Advantages over PSE version:

+ less heat dissipation on the JN30 (no DC up converter)

+ class 4 support

+ lower cost

JN30-PoE config	PD	PSE	PSE48
Only 12V	-	-	-
Only 48V	-	-	\checkmark
12V-48V	~	V	-
Class	Class 4	Class 3	Class 4

CSI

By default the CSI-2 connectors are configured for 3.3V power to power cameras such as the RPi camera 2.1 with imx219 sensor or B112 module.

You can find these beads on the picture below. If the beads L34 and/or L19 are populated, 3.3V is used for CSI.

If L32 and/or L17 populated, 5V is used for CSI.

You can find that option near the CSI connector. These components are specially marked with a "3" and a "5".

- 3: 3.3V for using Raspberry Pi camera; B101/B102
- 5: 5V for using %V powered CSI-2 devices

Pinout description

Note: all pin numbers of the Jetson Nano refer to the production version of the Nano module. The dev kit version has a different pinout which is not listed below.

Power Out (J7)

This is a 10 pin JST-GH connector with 1.25 mm pitch. Please note that this is the pinout is relevant for revisions 3.1 and better. 48V is derived from the DC power input. The PSE48 version only with a 48V DC adapter will provide this. Pin 3 to 6 provide 10.6V power from the 10.6V onboard DC converter. Current: 1A max per pin. Able to connect Auvidea add-on boards 38363, 38372, 38385, 38391 and 38392.

Pin	Function	Jetson Nano	GPIO	Description
1	Vdc	-	-	input voltage of the JN30 (max. 48V)
2	Vdc	-	-	input voltage of the JN30 (max. 48V)
3	12V	-	-	12V power out
4	12V	-	-	12V power out
5	12V	-	-	12V power out
6	12V	-	-	12V power out
7	GND	-	-	Ground
8	GND	-	-	Ground
9	GND	-	-	Ground
10	GND	-	-	Ground

Note: for best efficiency the 12V rail is set to 10.6V.

USB 3.0 (J11)

This is single USB 3.0 type a (vertical) connector.

Pin	Function	Jetson Nano	Description
1	5V	-	5V power controlled by USB2_EN_OC (A19) - max. 900 mA
2	USB1-D-	115	USB 2.0 data / USB1_D_N
3	USB1-D+	117	USB 2.0 data / USB1_D_P
4	GND	-	Ground
5	USB3_RX2-	161	USB 3.0 receive data / USBSS_RX_N
6	USB3_RX2+	163	USB 3.0 receive data / USBSS_RX_P
7	GND	-	Ground
8	USB3_TX2-	166	USB 3.0 transmit data / USBSS_TX_N
9	USB3_TX2+	168	USB 3.0 transmit data / USBSS_TX_P
10	GND	-	Ground

USB 2.0 (J12)

This is a standard micro USB 2.0 connector for firmware upgrades and for USB 2.0 devices like mouse and keyboard. New revisions feature a parallel connected JST-GH connector on the bottom side.

Pin	Function	Jetson Nano	Description
1	5V	-	5V power controlled by USB0_EN_OC* (A17) - max. 500 mA
2	USB0-D-	109	USB 2.0 data / USB2_D_N
3	USB0-D+	111	USB 2.0 data / USB2_D_P
5	GND	-	Ground

CSI-AB (J10)

This is a 22 pin 4 lane CSI-2 connector with 0.5mm pitch (Wuerth 687122149022). To open the connector and to release the cable just lift the brown lid upwards. This connector has the same pinout as the CSI-2 connector on the Raspberry Pi compute module carrier board. The contacts are on the bottom.

Pin	Function	Jetson Nano	Description
1	3.3V / 5V	-	3.3V power supply; 5V optional
2	CAM_I2C_SDA	215	3.3V level (converted from 1.8V of the Nano)
3	CAM_I2C_SCL	213	3.3V level (converted from 1.8V of the Nano)
4	GND	-	Ground
5	CAM1_MCLK	122	CAM1_MCLK (LC: 1.8V, non LC: 3.3V)
6	CAM1_PWDN	120	CAM1_PWDN (LC: 1.8V, non LC: 3.3V)
7	GND	-	Ground
8	CSI-B_D1+	17	CSI1_D1_P
9	CSI-B_D1-	15	CSI1_D1_N
10	GND	-	Ground
11	CSI-B_D0+	5	CSI1_D0_P
12	CSI-B_D0-	3	CSI1_D0_N
13	GND	-	Ground
14	CSI-A_CLK+	12	CSI0_CLK_P
15	CSI-A_CLK-	10	CSI0_CLK_N
16	GND	-	Ground
17	CSI-A_D1+	18	CSI0_D1_P
18	CSI-A_D1-	16	CSI0_D1_N
19	GND	-	Ground
20	CSI-A_D0+	6	CSI0_D0_P
21	CSI-A_D0-	4	CSI0_D0_N
22	GND	-	Ground

CSI-CD (J5)

This is a 22 pin 4 lane CSI-2 connector with 0.5mm pitch (Wuerth 687122149022). To open the connector and to release the cable just lift the brown lid upwards. This connector has the same pinout as the CSI-2 connector on the Raspberry Pi compute module carrier board. The contacts are on the bottom.

Pin	Function	Jetson Nano	Description
1	3.3V/5V	-	3.3V power supply; 5V optional
2	CAM_I2C_SDA	215	3.3V level (converted from 1.8V of the Nano)
3	CAM_I2C_CLK	213	3.3V level (converted from 1.8V of the Nano)
4	GND	-	Ground
5	CAM0_MCLK	116	CAM0_MCLK (LC: 1.8V, non LC: 3.3V)
6	CAM0_PWDN	114	CAM0_PWDN (LC: 1.8V, non LC: 3.3V)
7	GND	-	Ground
8	CSI-D_D1+	66	CSI4_D3_P
9	CSI-D_D1-	64	CSI4_D3_N
10	GND	-	Ground
11	CSI-D_D0+	42	CSI4_D2_P
12	CSI-D_D0-	40	CSI4_D2_N
13	GND	-	Ground
14	CSI-C_CLK+	54	CSI4_CLK_P
15	CSI-C_CLK-	52	CSI4_CLK_N
16	GND	-	Ground
17	CSI-C_D1+	60	CSI4_D1_P
18	CSI-C_D1-	58	CSI4_D1_N
19	GND	-	Ground
20	CSI-C_D0+	48	CSI4_D0_P
21	CSI-C_D0-	46	CSI4_D0_N
22	GND	-	Ground

CSI-E (J19)

This is a 22 pin 1 lane CSI-2 connector with 0.5mm pitch (Wuerth 687122149022) on the bottom of the JN30. To open the connector and to release the cable just lift the brown lid upwards. This connector has the same pinout as the CSI-2 connector on the Raspberry Pi compute module carrier board. The contacts are on the bottom.

Pin	Function	Jetson Nano	Description
1	3.3V/5V	-	3.3V power supply default (5V optional)
2	GEN2_I2C_SDA	187	3.3V level (converted from 1.8V of the Nano)
3	GEN2_I2C_SCL	185	3.3V level (converted from 1.8V of the Nano)
4	GND	-	Ground
5	CAM2_MCLK	116	CAM2_MCLK (LC: 1.8V, non LC: 3.3V)
6	CAM3_PWDN	118	3.3V level (GPIO_01 inverted)
7	GND	-	Ground
8	-		
9	-		
10	GND	-	Ground
11	-		
12	-		
13	GND	-	Ground
14	CSI-E_CLK+	30	CSI2_CLK_P
15	CSI-E_CLK-	28	CSI2_CLK_N
16	GND	-	Ground
17	CSI-E_D1+	36	CSI2_D1_P
18	CSI-E_D1-	34	CSI2_D1_N
19	GND	-	Ground
20	CSI-E_D0+	24	CSI2_D0_P
21	CSI-E_D0-	22	CSI2_D0_N
22	GND	-	Ground

CSI-F (J21)

This is a 22 pin 1 lane CSI-2 connector with 0.5mm pitch (Wuerth 687122149022) on the bottom of the JN30. To open the connector and to release the cable just lift the brown lid upwards. This connector has the same pinout as the CSI-2 connector on the Raspberry Pi compute module carrier board. The contacts are on the bottom.

Pin	Function	Jetson Nano	Description
1	3.3V/5V	-	3.3V power supply; 5V optional
2	GEN3_I2C_SDA	232	3.3V level (converted from 1.8V of the Nano)
3	GEN3_I2C_SCL	234	3.3V level (converted from 1.8V of the Nano)
4	GND	-	Ground
5	CAM1_MCLK	122	CAM1_MCLK (LC: 1.8V, non LC: 3.3V)
6	CAM4_PWDN	118	3.3V level (GPIO_01 inverted)
7	GND	-	Ground
8	-		
9	-		
10	GND	-	Ground
11	-		
12	-		
13	GND	-	Ground
14	CSI-F_CLK+	29	CSI3_CAM_P
15	CSI-F_CLK-	27	CSI3_CAM_N
16	GND	-	Ground
17	CSI-F_D1+	35	CSI3_D1_P
18	CSI-F_D1-	33	CSI3_D1_N
19	GND	-	Ground
20	CSI-F_D0+	23	CSI3_D0_P
21	CSI-F_D0-	21	CSI3_D0_N
22	GND	-	Ground

Ethernet (J1)

The JN30 features an on-board RJ45 connector for 10/100/1000BT Ethernet with 2 LEDs.

LED	Function	Jetson Nano	Description	
GBE0	GBE_LINK_ACT*	194	left LED	
GBE1	GBE_LINK_100	188	right LED	

HDMI (J9)

This is a 19 pin standard size HDMI c	connector.
---------------------------------------	------------

Pin	Function	Jetson Nano	Description
1	HDMI_TXD2+	77	HDMI data lane 2
2	GND	-	Ground
3	HDMI_TXD2-	75	HDMI data lane 2
4	HDMI_TXD1+	71	HDMI data lane 1
5	GND	-	Ground
6	HDMI_TXD1-	69	HDMI data lane 1
7	HDMI_TXD0+	65	HDMI data lane 0
8	GND	-	Ground
9	HDMI_TXD0-	65	HDMI data lane 0
10	HDMI_TXC+	83	HDMI clock
11	GND	-	Ground
12	HDMI_TXC-	81	HDMI clock
13	HDMI_CEC	94	
14	RSVD	-	reserved pin
15	HDMI_DDC_SCL	100	DP1_AUX_CH
16	HDMI_DDC_SDA	98	DP1_AUX_CH*
17	GND	-	Ground
18	PWR	-	5V power (max. 500 mA)
19	HPD	96	inverted and connected to DP1_HPD

UART 1/2 (J14)

This is a 6 pin JST-GH connector with 1.25 mm pitch. Please connect to USB TTL serial converter (3.3V TTL level). Normally just connect TXD, RXD, and GND. Swap data lines. Default speed: 115200 bps.

Pin	Function	Jetson Nano	GPIO	Description
1	5V	-	-	5V power output
2	UART1_TXD	103		UART 1 console port (3.3V TTL level): transmit data output
3	UART1_RXD	105		UART 1 console port (3.3V TTL level): receive data input
4	UART2_TXD /SWCLK	236		UART 2 console port (3.3V TTL level): transmit data output / SWCLK (to flash the MCU)
5	UART2_RXD / SWDIO	238		UART 2 console port (3.3V TTL level): receive data input / SWDIO
6	GND	-	-	Ground

UART1 is optionally tunnelled through the micro controller (MCU). Default: hardware bypass.

FAN (J13)

This is a 4 pin pico blade connector with 1.25 mm pitch.

Pin	Function	Jetson Nano	Description
1	GND	-	Ground
2	5V	-	5V power supply to the fan
3	FAN_TACH	208	tachometer from the fan (open drain input with 100k pull-up to $1.8V$)
4	FAN_PWM	230	PWM control to the fan (open drain output: controlled by FAN_PWM and "disable fan" with GPIO19 - F2)

SPI/I2C (J22)

This is a 10 pin JST-GH connector with 1.25 mm pitch. 1.8V level - there is no level shifter on JN30.

Pin	Function	Jetson Nano	GPIO	Description
1	3.3V	-	-	3.3V power supply
2	1.8V	-	-	1.8V power supply
3	SPI2_SCK	106		SPI2_SCK (1.8V)
4	SPI2_MISO	108		SPI2_MISO (1.8V)
5	SPI2_MOSI	104		SPI2_MOSI (1.8V)
6	SPI2_CS0	110		SPI2_CS0 (1.8V)
7	SPI2_CS1	112		SPI2_CS1 (1.8V)
8	GEN1_I2C_SCL	185		3.3V
9	GEN_1_I2C_SDA	187		3.3V
10	GND			Ground

UARTO (J25)

This is a 6 pin JST-GH connector with 1.25 mm pitch.

Pin	Function	Jetson Nano	GPIO	Description
1	5.0V	-	-	5.0V power supply
2	UART0_TXD	99	-	UART0_TXD 1.8V
3	UART0_RXD	101	-	UARTO_RXD 1.8V
4	UARTO_RTS	103	-	UARTO_RTS 1.8V
5	UART0_CTS	105	-	UARTO_CTS
6	GND	-	-	Ground

12S0 (J26)

This is a 6 pin JST-GH connector with 1.25 mm pitch.

Pin	Function	Jetson Nano	GPIO	Description
1	1.8V	-	-	1.8V power supply
2	I2S0_SDIN	195	-	12S0_DIN
3	I2S0_SDOUT	193	-	I2S0_DOUT
4	I2S0_LRCLK	197	-	I2DS0_FS
5	I2S0_CLK	199	-	I2S0_SCLK
6	GND	-	-	Ground

I2S1 (J28)

This is a 6 pin JST-GH connector with 1.25 mm pitch.

Pin	Function	Jetson Nano	GPIO	Description
1	1.8V	-	-	1.8V power supply
2	I2S1_SDIN	222	-	I2S1_DIN
3	I2S1_SDOUT	220	-	I2S1_DOUT
4	I2S1_LRCLK	224	-	I2DS1_FS
5	I2S1_CLK	226	-	I2S1_SCLK
6	GND	-	-	Ground

I2C (J29)

This is a 4 pin JST-GH connector with 1.25 mm pitch.

Pin	Function	Jetson Nano	GPIO	Description
1	3.3V	-	-	3.3V power supply
2	CAM_I2C_SCL	213	-	CAM_I2C_SCL
3	CAM_I2C_SDA	215		CAM_I2C_SDA
4	GND			Ground

Buttons

There are 3 buttons on the bottom side of the JN30. These buttons are not populated with the LC version.

• Button 1 (J16) - Power on

• Button 2 (J18) - Force recovery • Button 3 (J20) - Reset

M.2 type M 2280 (J15)

M.2 connector for NVMe cards. Form factor: 2230, 2242, 2260 or 2280 (22 x 80 mm) Interface: four PCIe lanes for top performance (no SATA support) Recommended: Samsung EVO 960 ands 970 modules.

MCU

The JN30 features an on-board micro controller (MCU: STM32F042F6P6) with 32 kByte Flash and 6kByte RAM. It monitors the power input rail and resets the Nano, if it discovers a brown out condition (voltage drop). Also it controls the UART1 bypass and the auto flashing.

MCU pin description

MCU Pin	Name	Туре	Function	Description
1	PB8/BOOT0	-	-	10k pull down
2	PF0	OD	POWER	1: inactive, 0: press power button
3	PF1	0	POWER	Power enable
4	NRST	-	-	hardware power on reset of MCU (RC circuit)
5	VddA	-	-	analog 3.3V supply (by always on LDO)
6	PAO	Ain0	V12_IN	measure input voltage (voltage divider: 100k up/10k down)
7	PA1	OD	SYS_RST_IN	System reset; open drain 1.8V
8	PA2	AF	UART1_RX	UART 1 to Nano (debug console)
9	PA3	AF	UART1_TX	UART 1 to Nano
10	PA4	PP	LED	0: LED off, 1: LED on (default MCU heartbeat)
11	PA5	AIN5	CM_PWR_ON	Compute module power on; 5V to Nano
12	PA6	AIN6	V5_IN	measure micro USB rail (voltage divider: 10k up/10k down)
13	PA7	IO	UART_BY	UART1 bypass *
14	PB1	Ain9	SHTDWN_REQ	Shutdown request
15	GND	-	-	Ground
16	VddA	-	-	digital 3.3V supply (by always on LDO)
17	PA9/PA11	AF	UART_TX	UART_TX to J14 connector (pin 2)
18	PA10/PA12	AF	UART_RX	UART_RX to J14 connector (pin 3)
19	PA13	-	SWDIO	SWD programming interface
20	PA14	-	SWCLK	SWD programming interface

Pin types:

PP - push/pull output

OD open drain output

Ain - analog input

AF - alternate function

IO - Input/Output

The power supply to the MCU is supplied by a 3.3V LDO regulator which is always on. So the MCU is powered as soon as power is applied to the power input on J1. This allows the MCU to manage whether power should be applied to the carrier board.

The MCU tunnels the console UART interface to the Jetson Nano. Some instructions are intercepted by the MCU and executed by it. These instructions are not forwarded to the compute module.

UART1 Bypass *

"1" - UARTO Jetson debug interface is tunneled through MCU

"0" - UARTO Hardware bypass around MCU (required if baud rate is not 115200)

<u>MCU command set</u>						
mcuadc	read the 4 voltage rails (power in, 5V, 3.3V, and 1.8V)					
mcureset	reset TX1/TX2					
mcupoweron	power on TX1/TX2					
mcushutdown	power off TX1/TX2					
mcuversion	display firmware version					
mcuhelp	display list of command available					

MCU firmware upgrade

The C source code for the MCU is available on request (Attolic TrueStudio project). Please contact us. The MCU may be programmed with the ST/LINK programming adapter (SWCLK, SWDIO, GND). We recommend the use of the STM32VLDISCOVERY discovery kit for STM32F100 Value line. It is available in the Auvidea online shop and at <u>digikey.com</u> (497-10633-ND).

MCU firmware v1.1 This version of the MCU is limited to a UART baud rate of 38400 baud max. Please set the TX1/TX2 to 38400. Please edit the file /boot/extlinux/extlinux.conf. Please replace 115200n8 by 38400n8. TIMEOUT 30 DEFAULT primary MENU TITLE p2371-2180 eMMC boot options LABEL primary MENU LABEL primary kernel LINUX /boot/Image INITRD /boot/initrd FDT /boot/tegra210-jetson-auvidea-j90.dtb

APPEND fbcon=map:0 console=tty0 console=ttyS0,115200n8

Appendix A

TPS23861 POE PSE software control - POE controller power toggle

There are a multitude of I2C commands to control the TPS23861, the registers are described in the <u>documentation</u> starting at page 45 (<u>http://www.ti.com/lit/ds/symlink/tps23861.pdf</u>)

To simply toggle on and off the power on a port, in this case port 1, the following command has to be sent via I2C to put the port into manual mode, meaning the power has to be toggled manually and will not change automatically:

sudo i2cset -y 1 0x20 0x12 0x01

I2cset writes to the I2C device. The "-y" part prevents the write confirmation, the 1 specifies the I2C bus, the "0x20" is the device I2C address of the chip, the "0x12" is the register address for the mode configuration and the "0x01" is the value, which in this case sets port 1 to manual mode.

Next, to toggle the port on and off there are two commands:

sudo i2cset -y 1 0x20 0x19 0x01

To turn on the port, and

sudo i2cset -y 1 0x20 0x19 0x10

To turn off the port. You can read out the power status of all ports with the following command:

sudo i2cget -y 1 0x20 0x10

Appendix B

How to flash nano production module with Auvidea JN30B using the NVIDIA SDK manager:

1. if you use our image form our website, copy the contents of the "JN30" folder to /home/USER/nvidia_nvidia_sdk/Jetpack_4.2.2_Linux_GA_P3448-0020/Linux_for_Tegra/

2. connect the JN30B + Nano via micro-USB OTG cable(J12 on the JN30) to the host UBUNTU PC (16.04 or higher)

3. turn on the power for the JN30B -> The nano will now boot in force recovery mode

- 4. start the SDK manger
- 5. select the Jetson Nano (not the "Jetson Nano (Developer Kit version)") as target hardware P3448-0020

				R Offline ∨
STEP 01 DEVELOPMENT ENVIRONMENT	PRODUCT CATEGORY	Jetson	¢	
STEP 02 DETAILS AND LICENSE	HARDWARE CONFIGURATION	Host Machine	Target Hardware Jatson Nano	
	TARGET OPERATING SYSTEM	Linux JetPack 4.2.2	Jetson AGX Xavier 8GB (P2888-0060)	
			Jetson TX2 4GB (P3489-0080)	
			Jetson TX1 (P2180)	
Repair/ Uninstall			Jetson Nano (P3448-0020)	

(see screenshot)

- 6. select the needed Jetpack components
- 7. wait until the flashing process is finished
 - -> first the OS will be flashed to the Nano
 - -> after the OS is flashed but before any jetpack components are install the system will boot
- -> follow the end user configuration of the system to set: system language, keyboard layout, timezone and user/passwort settings
 - -> now you can proceed with the installation of the jetpack components

8. Disconnect the micro-USB OTG cable to prevent the system from booting in force recovery mode the next time power is turned off and on again.

JN30 revisions

JN30A Revision 1 (38346)

- first prototype of the JN30 with the pinout for the Jetson Nano dev kit version

JN30A Revision 2 (38346-2)

- pinout for Nano A02 (dev kit module)
- fixed power sequencing
- added J23 Connector on bottom side for USB flashing port

JN30A Revision 3 (38346-3)

- pinout for Nano A02 (dev kit module)
- added JST GH on bottom for USB 2.0 flashing
- added PoE PD (with TPS2378 and MB110S-TP) no galvanic isolation for the PD power input
- added L66 (bypass if Vin = 48V no boost DC converter)
- added I2C bus to PoE chip (selection of 2 I2C busses)

JN30A Revision 3.1 (38346-3.1)

- pinout for Nano A02 (dev kit module)
- added 48V and 12V power out on J7 for 38363

JN30B Revision 4 (38346-4)

- modify pinout for Nano B01 (production module)
- removed eMMC and add micro SD card
- changed connectors to JST GH type (locking)
- added support for M.2 2242 card (added 3rd mount hole)
- added 3.3V level translation for CSI-2 clk and GPIO signals
- added I2S connector (1.8V)
- added UARTO connector (1.8V, with RTS and CTS)
- added USB host mode for micro USB connector

JN30B Revision 5 (38346-5)

- pinout for Nano B01 (production module)
- fixed SPI2 pinout (see J22)
- control USB2 and USB3 power by Nano GPIO (optional) USB 3 power via FanTach GPIO (optional)
- added mount hole for 2230 cards
- added I2C connector (for OLED displays) I2C_GEN2
- control PoE PSE power by GPIO_05
- added 2nd I2S connector (J28) with I2S1 bus
- added additional I2C connector (J29) with CAM_I2C bus
- replaced RPi camera logic and connectors with 2 CSI-2 2 lane connectors (J19 and J21)

JN30B Revision 6 (38346-6)

- pinout for Nano B01 (production module)
- minor optimisations for manufacturing

2230 or 2242 NVME card for the JN30B:

https://www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Western-Digital-PC-SN520-Commercial-Datasheet.pdf

JN30A: only for Nano dev kit module JN30B: only for Nano production module

to be added.

Disclaimer

Thank you for reading this manual. If you have found any typos or errors in this document, please let us know. This is the preliminary version of this data sheet. Please treat all specifications with caution as there may be any typos or errors.

The Auvidea Team